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Pattern dynamics of Rayleigh-B@ard convective rolls and weakly segregated diblock copolymers
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We consider the pattern dynamics of the lamellar phases observed in RayleigidBsonvection, as
described by the Swift-Hohenberg equation, and in the weak segregation regime of diblock copolymers. Both
numerical and analytical investigations show that the dynamical growth of the characteristic length scale in
both systems is described by the same growth exponents, thus suggesting that both systems are members of the
same universality clas§S1063-651X%98)03310-9

PACS numbds): 47.54:+r, 47.27.Te, 64.75.g. 83.10.Nn

I. INTRODUCTION II. MODELS

The study of the dynamics of pattern formation in systemsoeIn the Rayleigh-Beard system a simple fluid is confined

A . tween two horizontal plates that are heated from below
far from equilibrium encompasses examples from physics

X ) . . and for values of the Rayleigh numkedarger than a critical
chemistry, and biology{1]. Despite completely different 5,6 R an instability occurs that transforms the uniform

physical origins, some systems exhibit identical morpholoiate 1o a state consisting of spatially periodic convective
gies and pattern dynamics and may be perceived as membggsis. Near the onset of the convective instability the free
of the same universality class. energy functionalF of the Rayleigh-Beard system is, in

In this paper we consider the pattern dynamics of twogimensionless variables, well approximated by the form
morphologically identical systems, namely, Rayleighh&el

convective rolls and weakly segregated diblock copolymers.
At short times after a quench from the uniform stable phase

to the unstable phase both systems develop a labyrinthine _
domain morphology consisting of rollor lamellag of a deduced by Swift and Hohenbefrg]. Here the scalar order-

well-defined widthw. Initially the rolls are randomly ori- parameter fieldp=¢(x,y,t) is related to the local vertical

ented, but as time increases they locally align in parallelgmdtr\]’e:omiy’ E:tﬁR_ Rct)“TC is the ;edu?(ta: Raylteigh n_:;g"
thereby creating an increasingly ordered pattéiig. 1). We er that acts as the control parameter of the systemka

have investigated the dynamics of this coarsening process 6{26 wave number corresponding to the period 2w of the

L . : . : odulated structure, i.eky= m/w.
numerical integration of the appropriate Langevin equations N
and by analytical considerations. Both approaches agree that For small e the order parameter. f|e|q is locally well de-
: Scribed by a single-mode approximatiab(r)~cosk-r),

the characteristic length scale of the systems scales dyn"’Im\A/'herek is perpendicular to the orientation of the rolls, and

cally with growth exponents that are common to bOth SYS5s€e—0 this approximation is exa€¢b]. Minimizing the free

tems,. the(eby suggestl_ng that .the pattern dynamics o nergy Eq.(1) in the single-mode approximation yields

Rayle|gh-Be1arq convgctlon and diblock copolymers belong =k, as the selected wave number of the steady state. As

to the same universality class. o customary we us&,=1. The equation of motion fot is
The gbserved orde.rlng phenomengn is driven by twogiven by the Langevin equatiom,¢=— SF[ ]S+ ¢,

mechanisms, namely, interface relaxation and defect annih{ynere E 'is the above free energy aric- £(r,t) is thermal

lation. The effect of the former mechanism can in a defectngise correlated asz(r,t)Z(r’,t"))=2A8(r—r')s(t—t"),

free system be calculated by considering the speed at whiGljhere A parametrizes the strength of the thermal fluctua-

a modulated interface relaxes to ifstraigh ground state. tjons. Thus the Swift-Hohenberg equation reads

Specifically we apply the projection operator methagide-

veloped for interface relaxation in the Rayleighred sys- p=ep—(K5+V?)2hp— 3+ (. 2

tem to the same problem in diblock copolymers, thus provid-

ing a systematic treatment of both systems. Furthermore, we A diblock copolymer(DC) is a linear chain molecule

show how the application of a general approach to interfacgined together by two strings of equal length of, eAyand

relaxation recently developed by one of the auth8ldeads B monomers. The polymerization indéX is thus N=Nj

to the same result for the Rayleigh+Bed system. +Ng, whereN,=Ng are the numbers of and B mono-
This paper is organized as follows. In Sec. Il we introducemers, respectively. Above the critical temperatlige A and

the two models we study. Our numerical work is presented8 mix, whereas belovl . the two sequences are incompat-

and discussed in Sec. lll. Section IV contains the theoreticable and the copolymer melt undergoes phase separation.

considerations including a brief review of the projection op-However, spinodal decompositid®] cannot continue in-

erator method. Section V concludes with a summary andlefinitely because of the chemical bond between the se-

discussion. quences. As a result, the phase separation occurs on a length

FLo1= | dri-gle— G+ 7271002+ 914, (@)
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FIG. 1. Coarsening process. The figure shows shapshots of the domain configurations in the diblock polymer system shortly after the
qguench from the disordered ta) the bistable phase and @i)—(d) increasingly later times. The pictures are contour plots of<XIP33
systems where the contours are defined#y,y,t)=0. The order-parameter field(x,y,t) was obtained by numerical integration of Eq.
(5) at zero thermal noise. Simulations of the Swift-Hohenberg sy$tegqn(2)] produces domain configurations that morphologically are
indistinguishable from those presented here for the diblock copolymer system.

scale bounded above by the length of a stretched polymerT''* is the wave number that minimizes the free energy
chain (typically less than lum) where banded domains of [Eg.(3)] in a single-mode approximatid].

A-rich andB-rich regions alternate in the final equilibrium  The diblock copolymer equatiofiEq. (4)] can conve-
state. The free energy of a diblock copolymer melt below niently be rewritten in a form resembling the Swift-
is given (also in dimensionless variableby a modified Hohenberg equatiofEq. (2)],

Cahn-Hilliard free energy functiong¥]
dip=€ep— (1124 V2)2p+V23+ ¢, ©)

FW]ZJ d[f(¢)+ (12 (Ve)?] wheree=T"_—T. Linearizing in Fourier space abogt=0

we find, in both Egs.(2) and (5), that fluctuationsd¢,

do 4d. s ] , in the order parameter decay exponentiall§e,(t)

+(r/2)f drdTr MGG, @ 54 (0)exi-wd] with rate wy,—(a—k?)2— ¢, where a
. ] =1, and 1/2 for the Swift-Hohenbef&H) and DC systems,

where ¢(r,t) = ¢a(r,t) — ¢g(r,t) is the local concentration respectively. Thus both systems have a band of wave vectors

difference between thé and B mono.mers,f(¢)=—¢2/2 k_<k<k,, k.=+a* /e, for which the uniform state is
+¢%/4 is the bulk free energy density, ailis a control ngtaple. In the nomenclature of Cross and Hohenblg

parameter inversely proportional to the square of the polyghis means that both systems are stationary periodic, or type
merization indexI'~1/N“. Finally, the Green’s function

G(r,r’') in the second integral is defined by the Poisson *
equationV2G(r,r')=—68(r—r'). The order parameter for
this system is a conserved quantity, thus the appropriate
Langevin equation for the time evolution @f subsequent to We have solved the SH and DC equations numerically
a quench from the disordered to the bistable phas&ds using a finite difference scheme on two-dimensional lattices

Ill. SIMULATIONS

=V28F[ ]/ 8¢+ ¢ or, inserting Eq(3), of size 51512, with periodic boundary conditions. Nu-
5 3 w2 merical algorithms for the spatiotemporal evolution of both
hp=V(—¢+¢°-V°h)—I'¢p+{, (4 systems were obtained by replacing, in E¢®. and (5),

dip(r,t) by (¢{}+1—¢{})/At and V2¢(r,t) by the dis-

where the noisé€, representing the effect of thermal fluctua- cretized Laplacian

tions, has the correlationgZ(r,t)Z(r',t"))=—2AV25(r
—r")8(t—t'). ForT just below the critical valud';=1/4,
Eq. (4) describes the dynamics of weakly segregated lamellar V2¢ij —
domains with a well-defined widtlw=m/k,, where kg

=

0

1
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which includes contributions from both nearest neighbors  0.015] ' ' ' '
and next-nearest neighbors. Here the indi¢gsepresent the I
coordinates¥X,y) and the index represents time. A connec- 3 %
tion to absolute time and spatial coordinates is establishec I 0.05
through the relationships=nAt andr=(ix+jy)Ax. The o107
specific choice of coefficients in Eq6) ensures that the
Laplacian, in Fourier space, is isotropic to second order in
k?, i.e., the form of the Fourier transforii, of Eq. (6) is

I' .= —k?+ constx (Ax)%k*+ O((Axk?)®). For the diblock
copolymer system the fluctuation-dissipation relation for the
discrete equation can be maintained by generating two inde I &
pendent Gaussian variableg”(n), »(®)

T
<

R o

®
=
~
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he
A
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m

0.005

(n) with zero mean 0.000 Lo secct® . Tt mes e ]

and  correlations (v{?(m) v\ (n))=2AAtS; x8) | Smndap -100 50 0 50 100 150

and then setting[9] ¢;;(n)=(1AX)[ (P~ v?ﬁ-’+ %1 t(k—ko)

—v{?]. In the simpler case of the SH equatiaf(n) is a FIG. 2. Test of the scaling forn¥) and (inserted time evolu-

Gaussian distributed field with zero mean and correlationsgion of the structure factor illustrated with data from simulations of

(&ij(M) () =2AALS; k6j 1 Omn - the diblock copolymer system at zero thermal ndisere depicted
An inherent complication in this type of numerical simu- in arbitrary unit3. The scaling collapse was obtained with the value

lation is the conflicting constraints that the choice of the stepx=1/5 of the scaling exponent. The data sgts,*, +} represent

sizes is subject to. The need for numerical accuracy requirgse (dimensionlesstimes{1.8x 10%,5.6x 10*,1.8x 10°}.

(Ax,At) to be vanishingly small, whereas the finite compu-

tational power available requires the opposite. Specifically, and as time evolves it becomes increasingly sharper and

linear stability analysi$10] of the above algorithm with the higher. Assuming dynamical scaling, the simplest scaling

Laplacian given by Eq(6) shows that, in order to avoid form for the structure factor is

spurious solutions arising from the subharmonic bifurcation,

the dimensionless mesh siz and time stepA\t must sat- S(k,t) =t*f (Tk—Ko]), )

isfy the relationAt<2/{[ a— 16/3(Ax)2]?>— €}, where, as be-

fore, =1 and 1/2 for the SH and DC systems, respectivelywheref(y) is a scaling function. This form implies that the

In practice, the size ofAx is dictated by the the smallest width Ak of the structure factor and its intensig§(kg,t)

length scale in the problem, which is the selected wavelengthcale asAk~t™* and S(kg,t) ~t*. In agreement with previ-

A=2w. In order to avoid lattice pinning it is desirable to ous work by a number of authors, our data from the SH

have many lattice points per wavelength. This quantity issystem satisfy this scaling form with the scaling exponents

given by A/Ax, so by loweringAx any number can be ob- x=1/5 andx=1/4 at zero and nonzero thermal noise, respec-

tained. However, from the above stability relation we seetively [2,11,13. Furthermore, we find that the diblock co-

that decreasind x below unity drastically reduces the maxi- polymer system also obeys E) with the same values of

mum allowable size of the time step and hence increases ttibe scaling exponeni§ig. 2).

required computer time. A more direct method of probing the rolls increasingly
We have performed our simulations using the valuesrientational order is computing a correlation function

(e,Ax,At)=(0.25,27/8,0.025) for the Swift-Hohenberg C,.(r,t), of the “nematic” order parameten=V¢/|V|,

system and €,Ax,At)=(0.05,1.0,0.05) for the diblock co- i.e., the unit vector normal to surfaces of constar(Fig. 3).

polymer system, where both sets of values satisfy the apprdexplicitly we have computed the correlation function

priate stability relations. In the SH system the selected wave-

length is approximately 2, soAx=21/8 gives eight lattice

points per wavelength. The corresponding quantity in the DC

system, which we consider in the weak segregation limit or

small €, is approximately 9, since here the selected wave-

length isx =27/(1/4— €)Y 20
Appropriate to a critical quench the systems were initially

prepared in the homogeneous single phase state by assigning

to each lattice site a small random number uniformly distrib-

uted about$=0. Nonzero temperatures were simulated us-

ing the fluctuation strength&a=0.4 andA=0.1 for the SH

and DC systems, respectively.

Dynamical scaling

X/Ax

We monitor the coarsening phenomenon by means of the
usual structure factoB(k,t)=|¢y(t)|>, where ¢(t) is the FIG. 3. Local director fieldn(r)=Ve(r)/|Vé(r)|, here illus-
Fourier transform of the order parameter. The circularly avtrated as small bars, from which the correlation functi®nis com-
eraged structure factd(k,t) is sharply peaked around the puted. For visual clarity only directors near the domain boundaries
wave vectork,, which corresponds to the width of the rolls, (solid contours are depicted.
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FIG. 4. Time evolution of the director correlation functi@8) illustrated with four successivedimensionlesstimes {5.6x 10°,1.8
x 10%,5.6x 10%,1.8X 10°} increasing from left to right. We extract the time evolution of the length stél by monitoring ther ,(t) for
which C,,(r ,(t))= a, wherea<1 is some constarithe horizontal dotted lines show={0.2,0.3,0.4). The scaling exponentis extracted
from a log-log plot ofr ,(t) versust (inserted. The data shown result from a simulation of the SH system at zero thermal noise and
assumes the valug=0.25+0.02.

2 The expected scaling form for the correlation function
cnn(r,t)=m g ((n(x+r,t)-n(x,t)]»—1, (8 Cpnis

whereN? is the volume of the system and angular brackets

denote a statistical average implemented through several in- Can(r, ) =F(r/L(1)), (10
dependent runs. We compuen(r,)-n(r,)]?) rather than

{n(rq)-n(r,)) since we are interested only in the relative ] ] ) ] ]

angle 6(r1,r,) between the directors at sitesandr,. For ~ WhereF is a scaling function and is a length scaling as
sites separated by large distances the corresponding directdrét) ~t¥. For both the Swift-Hohenberg and diblock copoly-
can be expected to be Comp|ete|y decorrelated and thu®er SyStem we find this Scaling form to be satisfied with the

2(cog6),—1=0. scaling exponenty=0.25 andy=0.30 at zero and finite
The time complexity of the algorithm for both,,, and its  noise, respectivelyFig. 4).
corresponding structure factor Sn(k,t) The values of the scaling expongntagree with the find-

=N"23,C,n(r,t)expik-r) is N* and with N=512 exces- ings of Houet al. [12]. These authors measure the density
sive computer time is demanded. This problem can be cirp(t) of topological defects in the Swift-Hohenberg system
cumvented by introducing the two-dimensional tensorand find the algebraic decay(t)~t~Y, wherey=0.25 and
Qan(r,t)=ny(r,t)ny(r,t), where n,, a={x,y} are the y=0.30 atzero and finite noise, respectively. The boundaries
components oh. In terms ofQ,, Eq. (8) appears as between plane-wave domains consist of topological defects.
Therefore, the defect density must scale as the perimeter den-
sity of the domains, which again scales as the reciprbocal

of the linear size of the domains. Furthermore, Hzfal.

find that the energy of the Swift-Hohenberg systénde-
where summation over repeated indices is understood. Sinagays as the defect density. Also here the diblock copolymer
San Now has the formS,,(k,t) =2(Q.p(Kk,t)Qap( —k,t)) system behaves as the Swift—Hohenberg system. Measuring
— 80 andC,, can quickly be computed vig,, using a fast the energy, as given by E(g), we find the algebraic decay
Fourier transfornj13]. E(t)~t Y with the same values for as above.

2
cmun=ﬁg§<Qwu+anwum»—L 9)
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IV. THEORY = (kyyt KKy I+ (2K, + K224, where k, meansd,k, etc.
Theoretical analysis of the pattern dynamics of Iamellal’b‘ppllcatlon of the projection operator
phases is complicated by the presence of topological defects Ko (ko
and current theories apply only to systems without defects. pp dud,¢® (15
m _7T/ko

However, locally typd s systems exhibit nearly ideal lamel-
lar structures where, in two dimensions, the order parameter '
can be described as an amplitude modulated plane wa38 Eq. (14) produces the final result
d(r,0)=[ poA(x,y,t)e'k*+c.c], where we have assumed v=—ak+Kss, (16)
lamellae perpendicular to the direction; A is a complex
amplitude and c.c. denotes the complex conjugate. Insertinghere v=4d,u is the interface velocity, a
this form into the equations of motia@) or (5), we obtainin = —-2(k3+ g/o), o= (kolzw)f_ﬁkyk du(a,¢%? and p
the absence of noise tleanplitude equation - o . .

P d =(ko/2m) [ fij’kodu((?uqﬁs)(aﬁqss). The term involving A

700 A= €A+ £ 0 (i12ko) 971°A—QolAI°A,  (11)  drops out from the final result becausé, ¢® can be written

o as dy[ (k,+ «%12)(9,4°)?], which vanishes when integrated
wherery, £y, andgg are constants. The derivation of Ed. qyer one lamellar thickness.

(11) from the Swift-Hohenberg equatiai2) is described in In order to evaluate the coefficieatin Eq. (16) the sta-

Ref. [1] and the method of this reference can easily be extionary solution is expanded to leading ordereinyielding
tended to the DC equatiofdb). The amplitude equation de- [5]

scribes the dynamics of both the magnitudd and the

phased(r,t) of the complex amplitudé. By perturbing the ¢5(u) =D cogkou) + P ;coq3kpu), a7
steady state solution of E(L1) we obtain, to lowest order in
€, the phase equatiofil] with coefficients®, = \4e/3 andd ;= — ®3/256. Using this
expansion we fincdh= €2/256, remembering thekg: 1.
9,0=Dd50+D, 3,0, (12) Applying the same analysis as above to the DC equation,

o o ) the equation corresponding to EG4) becomes
whereD| and D, are diffusion coefficients in the parallel

and normal directions, respectively. Dimensional analysis of 9¢S au aps 33 S P
Eq. (12) implies at¥? growth of the characteristic length —— —=x +2 - — —
scale, in disagreement with numerical investigations that fa- Ju at u au® u
vor a smaller value of the growth exponent. However, as (18)
discussed below, by considering how a curved interface re-

s : 2 ;s 3_1,._
laxes, working to second order &) a transient regime with Whgrg (bs ‘s the solution  of 7,¢™(u(r.t)) . e (;/2
t4 growth can be predicted. +d;)14%(u(r,t)) and A has the same meaning as in Eqg.

(14). Using the projection operatdEq. (15)], we retrieve
Eq. (16), only now witha=—(1+28/0—3vy/o) wherey
= (Ko/27) fi’ﬁ;’kodu(&)z(au&)z and o and 8 are as de-

fined above. The quantitias, 8, andy can be determined
by substituting the forn{17) into the free-energy functional
(3) and minimizing with respect tky, ®,, and®;. To the
required order ine=1/4-T", the result isky=T"*=(1/4
— €)Y ®2=(8/3)e+(19/6)e?, and dy=—(9/128)D3,
leading (after some algebjato a=(45/32)?, correct to
leading nontrivial order ire.

In this approximatiora is a very small numbera=2.4

3(¢%?

A. Projection operator method

In order to follow the slowly varying orientation of the
rolls (or lamellag Elderet al.[2] introduce a coordinate sys-
tem that tracks the interface given by the points at which
=0. Specifically, the Cartesian coordinatgsand y are
mapped onto curvilinear coordinates,$), whereu ands
are locally normal and parallel to the linesr,t)=0. As-
suming that the curvature of the individual rolls is small, the
Laplacian in the new coordinates becomes

52 PR X 10 * anda=3.5x 103 in the SH and DC systems when
V2= —2+K&— +—, (13 €=0.25 ande=0.05, respectively. Dimensional analysis of
au U os Eq. (16) therefore implies a crossover in the growth of the

characteristic length scale from a transiett growth to an
asymptotict*’? growth. The crossover occurs approximately
Swhen @t)¥2=t¥4 that is, whert=1.7x 10’ in the SH sys-
tem and wheri=8x 10" in the DC system. These crossover
times far exceed the latest times we have been able to probe
905 in our simulations, but thougtas pointed out by Eldest al.
+ kge—— +A, (14) [2]) an appealing interpretation of the numerical results is
Ju that they witness the transient regime, there is no numerical
evidence of any crossover behavior. However, since the es-
where k= d°k/ds? and ¢° is the solution of(u(r,t))®  timated crossover time for the DC system is three orders of
=[e— (ki+d%)?14S(u(r,t)). The final termA in Eq. (14  magnitude smaller than the corresponding time in the SH
contains terms of higher order i and terms involving the system, the DC system is the obvious candidate for future
derivative of k in the direction normal to the lamellag& investigations.

wherex is the local curvature. Assuming that the stationary
solution of the one-dimensional Swift-Hohenberg equation i
a good approximation in the normal direction, E8) be-
comes

aS du (a¢s PV
=2k

au ot T\ au T gyl
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In the limit e—0 we haveg, —0, so fore=0 the eigen-
2y value equation  reads — wqyg= — (K§— a2y —2(K}
-q? Yq— ¥y - Remembering thag, is periodic inx with
wave vectorkg, this impliequ=q4. For smalle we expect
quaq2+q4, wherea is a constant. We can verify this
assertion and determine the value afby treating the

4
27 ~
/o g-dependent part oH as a perturbation and calculate the
2r/q first-order correction to the ground state eigenvalue using
g standard perturbation techniques. The unperturbed eigen-
v function for H is o= ¢, with eigenvalue zero. Obviously

FIG. 5. Sketch of@) the unperturbed lamellar phase afil a theq” term in the perturbation just gives a contributighto

modulated lamellar phase. The perturbatipr A(t)cosQy)y in- the eigenvalue. Th®(q®) contribution is
troduces spatial variations in the pattern at the length stale

=2m/q. f dX Gl (7 +kg) bl
2 2
B. Relaxation of a modulated interface ag=-2q f d (¢/)2
X
The same problem can be investigated using a general -

approach to growth exponents recently developed by one of
the authorg3]. We consider a small regular perturbation of f dx(¢])?
the perfect lamellar phase and wish to determine the rate at =202 —k3
which the system relaxes to its ground state. Setting f dx( )2
H(X,y,1)=d(X)+ B(x,y,t), whereg, (x) is the stationary :

lamellar solution of the Swift-Hohenberg equati(), and with ¢, expanded as previousfEg. (17)] we havea

— 2 i i
0=edp —(K5+32)%p . — @2, (19) = €°/256. Thus the relaxation rate is

62

and ¢ is a small perturbation, the linearized equation of mo- 0q=5=20’+ " (24)
tion for ¢ becomes 256

~ o~ 2 oo~ 2~ We notice that the coefficiemt here assumes the same value
hp=ep—(ko+ V) d—3¢1 . (20 as determined above by the projection operator method and
. , that a dimensional analysis of E@4) thus predicts the same
A modulation of the lamellar phase with wave vecepr crossover behavior as did the analysis of ELf) for the

<k9 Is ﬁ(x,y,,t)=¢L[X+A(t)<zjosh(qy)]z¢>|,._(x()j interface velocity. Furthermore, we notice that the formal
+ ¢ (9A()cos@y), whereg meansi,$, and the amplitude expression for the coefficient is identical to that obtained

A of the modl_JIatiqn is assumed to be small compar.ed to th'IE'rom the projection operator method, as may be seen from an
lamellar spacingFig. 5. More generally, we can write the jyteqration by parts, i.e., the result holds generally, not just to
modulated phase as the order given by the expansi¢h?).
e Due to the more complicated structure of the DC equation
B(X,y,1)= pL(X) +Age” “d'cogqy) yg(x),  (21) P q

(5), a similar analysis of interfacial relaxation in diblock co-
where the functiony,(x) has the same periodicity ag, polymers has not yet proved possible. The main difficulty is

[ L ~coskeX)ko=1] and satisfies the condition,o(X) tha.lt.the Hamiltonian opgratdﬁ for this case is not se_lf-
:¢|I_(X) Sinceqzo represents a uniform translation of the ad]0|nt, even forq=0, with the result that a perturbatlve
lamellae. We have written the time dependence of the amftalculation of wq requires not only the null eigenfunction
plitude asA(t) = Ay e~ “d, describing the decay of the eigen- ¢/ (x) of theq=0 operatoH,, but also the null eigenfunc-
perturbation of the wave vectorat a characteristic rate, . tion of the adjoint operatoH,, which we have so far been
Insertion of Eq.(21) into Eq. (20) yields an eigenvalue ynable to determine.
equationH q= wqiq for the relaxation rate with the Hamil-
tonian V. SUMMARY AND DISCUSSION

H=(k3+02)2+3¢2(x) — e—20%(92+k3) +q*. (22 By numerical investigations we have found evidence of

identical coarsening dynamics for the lamellar phase of the

The g=0 mode corresponds to a uniform displacement ofSwift-Hohenberg and diblock copolymer systems. This sug-
the interface whereforen,_, is fixed to zero. Sincey,  9gests that both systems belong to the same universality class.

= ¢/ , this condition corresponds to We have extracted temperature-dependent dynamical scaling
exponents for the characteristic length scale partly by com-
O=ep| —3didp|— =2 — ], (23)  puting the ordinary structure factor and partly by computing

a correlation functionEq. (8)] of the director field. Surpris-
which is satisfied because E@®J) is the derivative of Eq. ingly, the two methods yield different scaling exponents in-
(19. dicating that the scaling phenomenon in question is non-
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trivial. We have no good understanding of the reasons foSwift-Hohenberg and diblock copolymer systems belong to
this discrepancy, but it should be noticed that the length scalthe same universality class. However, the theoretical analysis
extracted from the structure factor does not have the sama&pplies only to defect-free systems and does not explain the
immediate geometrical interpretation as has the length scalgbserved temperature dependence of the growth exponents.
extracted from the director-field correlation function. Fur- A thorough understanding of the coarsening phenomenon
thermore, the fact that the length scélg, arising from the considered here requires a theoretical treatment that success-
director field correlation function scales with the samefully includes the simultaneous effects of both interfacial re-
growth exponents as the energy suggests thatis the laxation and defect-defect interactions.
physically important length scale in the system.

Theoretically, by considering how.cur_ved interfaces relax ACKNOWLEDGMENTS
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