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Pattern dynamics of Rayleigh-Bénard convective rolls and weakly segregated diblock copolymers

Jacob J. Christensen1 and Alan J. Bray2
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We consider the pattern dynamics of the lamellar phases observed in Rayleigh-Be´nard convection, as
described by the Swift-Hohenberg equation, and in the weak segregation regime of diblock copolymers. Both
numerical and analytical investigations show that the dynamical growth of the characteristic length scale in
both systems is described by the same growth exponents, thus suggesting that both systems are members of the
same universality class.@S1063-651X~98!03310-8#

PACS number~s!: 47.54.1r, 47.27.Te, 64.75.1g. 83.10.Nn
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I. INTRODUCTION

The study of the dynamics of pattern formation in syste
far from equilibrium encompasses examples from phys
chemistry, and biology@1#. Despite completely differen
physical origins, some systems exhibit identical morpho
gies and pattern dynamics and may be perceived as mem
of the same universality class.

In this paper we consider the pattern dynamics of t
morphologically identical systems, namely, Rayleigh-Be´nard
convective rolls and weakly segregated diblock copolyme
At short times after a quench from the uniform stable ph
to the unstable phase both systems develop a labyrint
domain morphology consisting of rolls~or lamellae! of a
well-defined widthw. Initially the rolls are randomly ori-
ented, but as time increases they locally align in para
thereby creating an increasingly ordered pattern~Fig. 1!. We
have investigated the dynamics of this coarsening proces
numerical integration of the appropriate Langevin equati
and by analytical considerations. Both approaches agree
the characteristic length scale of the systems scales dyn
cally with growth exponents that are common to both s
tems, thereby suggesting that the pattern dynamics
Rayleigh-Bénard convection and diblock copolymers belo
to the same universality class.

The observed ordering phenomenon is driven by t
mechanisms, namely, interface relaxation and defect ann
lation. The effect of the former mechanism can in a defe
free system be calculated by considering the speed at w
a modulated interface relaxes to its~straight! ground state.
Specifically we apply the projection operator method@2# de-
veloped for interface relaxation in the Rayleigh-Be´nard sys-
tem to the same problem in diblock copolymers, thus prov
ing a systematic treatment of both systems. Furthermore
show how the application of a general approach to interf
relaxation recently developed by one of the authors@3# leads
to the same result for the Rayleigh-Be´nard system.

This paper is organized as follows. In Sec. II we introdu
the two models we study. Our numerical work is presen
and discussed in Sec. III. Section IV contains the theoret
considerations including a brief review of the projection o
erator method. Section V concludes with a summary a
discussion.
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II. MODELS

In the Rayleigh-Be´nard system a simple fluid is confine
between two horizontal plates that are heated from be
and for values of the Rayleigh numberR larger than a critical
value Rc an instability occurs that transforms the unifor
state to a state consisting of spatially periodic convect
rolls. Near the onset of the convective instability the fr
energy functionalF of the Rayleigh-Be´nard system is, in
dimensionless variables, well approximated by the form

F@f#5E d2r $2f@e2~k0
21¹2!2#f/21f4/4%, ~1!

deduced by Swift and Hohenberg@4#. Here the scalar order
parameter fieldf5f(x,y,t) is related to the local vertica
fluid velocity, e5(R2Rc)/Rc is the reduced Rayleigh num
ber that acts as the control parameter of the system, andk0 is
the wave number corresponding to the periodl52w of the
modulated structure, i.e.,k05p/w.

For smalle the order parameter field is locally well de
scribed by a single-mode approximationf(r );cos(k•r ),
wherek is perpendicular to the orientation of the rolls, an
ase→0 this approximation is exact@5#. Minimizing the free
energy Eq.~1! in the single-mode approximation yieldsk
5k0 as the selected wave number of the steady state. A
customary we usek051. The equation of motion forf is
given by the Langevin equation] tf52dF@f#/df1z,
whereF is the above free energy andz5z(r ,t) is thermal
noise correlated aŝz(r ,t)z(r 8,t8)&52Ad(r2r 8)d(t2t8),
where A parametrizes the strength of the thermal fluctu
tions. Thus the Swift-Hohenberg equation reads

] tf5ef2~k0
21¹2!2f2f31z. ~2!

A diblock copolymer ~DC! is a linear chain molecule
joined together by two strings of equal length of, e.g.,A and
B monomers. The polymerization indexN is thus N5NA
1NB , whereNA5NB are the numbers ofA and B mono-
mers, respectively. Above the critical temperatureTc , A and
B mix, whereas belowTc the two sequences are incompa
ible and the copolymer melt undergoes phase separa
However, spinodal decomposition@6# cannot continue in-
definitely because of the chemical bond between the
quences. As a result, the phase separation occurs on a le
5364 © 1998 The American Physical Society
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FIG. 1. Coarsening process. The figure shows snapshots of the domain configurations in the diblock polymer system shortly
quench from the disordered to~a! the bistable phase and at~b!–~d! increasingly later times. The pictures are contour plots of 1283128
systems where the contours are defined byf(x,y,t)50. The order-parameter fieldf(x,y,t) was obtained by numerical integration of E
~5! at zero thermal noise. Simulations of the Swift-Hohenberg system@Eq. ~2!# produces domain configurations that morphologically a
indistinguishable from those presented here for the diblock copolymer system.
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scale bounded above by the length of a stretched poly
chain ~typically less than 1mm) where banded domains o
A-rich andB-rich regions alternate in the final equilibrium
state. The free energy of a diblock copolymer melt belowTc
is given ~also in dimensionless variables! by a modified
Cahn-Hilliard free energy functional@7#

F@f#5E ddr @ f ~f!1~1/2!~¹f!2#

1~G/2!E ddr ddr 8f~r !G~r ,r 8!f~r 8!, ~3!

wheref(r ,t)5fA(r ,t)2fB(r ,t) is the local concentration
difference between theA and B monomers,f (f)52f2/2
1f4/4 is the bulk free energy density, andG is a control
parameter inversely proportional to the square of the po
merization indexG;1/N2. Finally, the Green’s function
G(r ,r 8) in the second integral is defined by the Poiss
equation¹2G(r ,r 8)52d(r2r 8). The order parameter fo
this system is a conserved quantity, thus the appropr
Langevin equation for the time evolution off subsequent to
a quench from the disordered to the bistable phase is] tf
5¹2dF@f#/df1z or, inserting Eq.~3!,

] tf5¹2~2f1f32¹2f!2Gf1z, ~4!

where the noisez, representing the effect of thermal fluctu
tions, has the correlationŝz(r ,t)z(r 8,t8)&522A¹2d(r
2r 8)d(t2t8). For G just below the critical valueGc51/4,
Eq. ~4! describes the dynamics of weakly segregated lame
domains with a well-defined widthw5p/k0 , where k0
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5G1/4 is the wave number that minimizes the free ener
@Eq. ~3!# in a single-mode approximation@8#.

The diblock copolymer equation@Eq. ~4!# can conve-
niently be rewritten in a form resembling the Swif
Hohenberg equation@Eq. ~2!#,

] tf5ef2~1/21¹2!2f1¹2f31z, ~5!

wheree5Gc2G. Linearizing in Fourier space aboutf50
we find, in both Eqs.~2! and ~5!, that fluctuationsdfk
in the order parameter decay exponentiallydfk(t)
5dfk(0)exp@2vkt# with rate vk5(a2k2)22e, where a
51, and 1/2 for the Swift-Hohenberg~SH! and DC systems,
respectively. Thus both systems have a band of wave vec
k2,k,k1 , k65Aa6Ae, for which the uniform state is
unstable. In the nomenclature of Cross and Hohenberg@1#
this means that both systems are stationary periodic, or
I s .

III. SIMULATIONS

We have solved the SH and DC equations numerica
using a finite difference scheme on two-dimensional latti
of size 5123512, with periodic boundary conditions. Nu
merical algorithms for the spatiotemporal evolution of bo
systems were obtained by replacing, in Eqs.~2! and ~5!,
] tf(r ,t) by (f i j

n112f i j
n )/Dt and ¹2f(r ,t) by the dis-

cretized Laplacian

¹2f i j 5
1

~Dx!2F2

3 (
NN

1
1

6 (
NNN

2
10

3 Gf i j , ~6!
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which includes contributions from both nearest neighb
and next-nearest neighbors. Here the indicesi , j represent the
coordinates (x,y) and the indexn represents time. A connec
tion to absolute time and spatial coordinates is establis
through the relationshipst5nDt and r5( i x̂1 j ŷ)Dx. The
specific choice of coefficients in Eq.~6! ensures that the
Laplacian, in Fourier space, is isotropic to second orde
k2, i.e., the form of the Fourier transformGk of Eq. ~6! is
Gk52k21const3(Dx)2k41O„(Dxk2)3

…. For the diblock
copolymer system the fluctuation-dissipation relation for
discrete equation can be maintained by generating two in
pendent Gaussian variablesn i j

(1)(n),n i j
(2)(n) with zero mean

and correlations ^n i j
(a)(m)nkl

(b)(n)&52ADtd i ,kd j ,ldm,nda,b

and then setting@9# z i j (n)5(1/Dx)@n i 11,j
(1) 2n i , j

(1)1n i , j 11
(2)

2n i , j
(2)#. In the simpler case of the SH equation,z i j (n) is a

Gaussian distributed field with zero mean and correlati
^z i j (m)zkl(n)&52ADtd i ,kd j ,ldm,n .

An inherent complication in this type of numerical sim
lation is the conflicting constraints that the choice of the s
sizes is subject to. The need for numerical accuracy requ
(Dx,Dt) to be vanishingly small, whereas the finite comp
tational power available requires the opposite. Specificall
linear stability analysis@10# of the above algorithm with the
Laplacian given by Eq.~6! shows that, in order to avoid
spurious solutions arising from the subharmonic bifurcati
the dimensionless mesh sizeDx and time stepDt must sat-
isfy the relationDt,2/$@a216/3(Dx)2#22e%, where, as be-
fore, a51 and 1/2 for the SH and DC systems, respective
In practice, the size ofDx is dictated by the the smalles
length scale in the problem, which is the selected wavelen
l52w. In order to avoid lattice pinning it is desirable t
have many lattice points per wavelength. This quantity
given byl/Dx, so by loweringDx any number can be ob
tained. However, from the above stability relation we s
that decreasingDx below unity drastically reduces the max
mum allowable size of the time step and hence increases
required computer time.

We have performed our simulations using the valu
(e,Dx,Dt)5(0.25,2p/8,0.025) for the Swift-Hohenberg
system and (e,Dx,Dt)5(0.05,1.0,0.05) for the diblock co
polymer system, where both sets of values satisfy the ap
priate stability relations. In the SH system the selected wa
length is approximately 2p, soDx52p/8 gives eight lattice
points per wavelength. The corresponding quantity in the
system, which we consider in the weak segregation limit
small e, is approximately 9, since here the selected wa
length isl52p/(1/42e)1/4.

Appropriate to a critical quench the systems were initia
prepared in the homogeneous single phase state by assi
to each lattice site a small random number uniformly distr
uted aboutf50. Nonzero temperatures were simulated
ing the fluctuation strengthsA50.4 andA50.1 for the SH
and DC systems, respectively.

Dynamical scaling

We monitor the coarsening phenomenon by means of
usual structure factorS(k,t)5ufk(t)u2, wherefk(t) is the
Fourier transform of the order parameter. The circularly
eraged structure factorS(k,t) is sharply peaked around th
wave vectork0 , which corresponds to the width of the roll
s
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and as time evolves it becomes increasingly sharper
higher. Assuming dynamical scaling, the simplest scal
form for the structure factor is

S~k,t !5txf ~ tx@k2k0# !, ~7!

where f (y) is a scaling function. This form implies that th
width Dk of the structure factor and its intensityS(k0 ,t)
scale asDk;t2x andS(k0 ,t);tx. In agreement with previ-
ous work by a number of authors, our data from the S
system satisfy this scaling form with the scaling expone
x51/5 andx51/4 at zero and nonzero thermal noise, resp
tively @2,11,12#. Furthermore, we find that the diblock co
polymer system also obeys Eq.~7! with the same values o
the scaling exponents~Fig. 2!.

A more direct method of probing the rolls increasing
orientational order is computing a correlation functio
Cnn(r ,t), of the ‘‘nematic’’ order parametern5¹f/u¹fu,
i.e., the unit vector normal to surfaces of constantf ~Fig. 3!.
Explicitly we have computed the correlation function

FIG. 2. Test of the scaling form~7! and ~inserted! time evolu-
tion of the structure factor illustrated with data from simulations
the diblock copolymer system at zero thermal noise~here depicted
in arbitrary units!. The scaling collapse was obtained with the val
x51/5 of the scaling exponent. The data sets$L,*, 1% represent
the ~dimensionless! times$1.83104,5.63104,1.83105%.

FIG. 3. Local director fieldn(r )5¹f(r )/u¹f(r )u, here illus-
trated as small bars, from which the correlation function~8! is com-
puted. For visual clarity only directors near the domain bounda
~solid contours! are depicted.
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FIG. 4. Time evolution of the director correlation function~8! illustrated with four successive~dimensionless! times $5.63103,1.8
3104,5.63104,1.83105% increasing from left to right. We extract the time evolution of the length scaleL(t) by monitoring ther a(t) for
which Cnn„r a(t)…5a, wherea,1 is some constant~the horizontal dotted lines showa5$0.2,0.3,0.4%). The scaling exponenty is extracted
from a log-log plot ofr a(t) versust ~inserted!. The data shown result from a simulation of the SH system at zero thermal noisey
assumes the valuey50.2560.02.
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Cnn~r ,t !5
2

N2 (
x

^@n~x1r ,t !•n~x,t !#2&21, ~8!

whereN2 is the volume of the system and angular brack
denote a statistical average implemented through severa
dependent runs. We compute^@n(r1)•n(r2)#2& rather than
^n(r1)•n(r2)& since we are interested only in the relativ
angleu(r1 ,r2) between the directors at sitesr1 and r2 . For
sites separated by large distances the corresponding dire
can be expected to be completely decorrelated and
2^cos2u&u2150.

The time complexity of the algorithm for bothCnn and its
corresponding structure factor Snn(k,t)
5N22( rCnn(r ,t)exp(ik•r ) is N4 and with N5512 exces-
sive computer time is demanded. This problem can be
cumvented by introducing the two-dimensional tens
Qab(r ,t)5na(r ,t)nb(r ,t), where na , a5$x,y% are the
components ofn. In terms ofQab Eq. ~8! appears as

Cnn~r ,t !5
2

N2 (
x

^Qab~x1r ,t !Qab~x,t !&21, ~9!

where summation over repeated indices is understood. S
Snn now has the formSnn(k,t)52^Qab(k,t)Qab(2k,t)&
2dk,0 andCnn can quickly be computed viaSnn using a fast
Fourier transform@13#.
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The expected scaling form for the correlation functi
Cnn is

Cnn~r ,t !5F„r /L~ t !…, ~10!

whereF is a scaling function andL is a length scaling as
L(t);ty. For both the Swift-Hohenberg and diblock copol
mer system we find this scaling form to be satisfied with
scaling exponentsy50.25 andy50.30 at zero and finite
noise, respectively~Fig. 4!.

The values of the scaling exponenty agree with the find-
ings of Houet al. @12#. These authors measure the dens
r(t) of topological defects in the Swift-Hohenberg syste
and find the algebraic decayr(t);t2y, wherey50.25 and
y50.30 at zero and finite noise, respectively. The bounda
between plane-wave domains consist of topological defe
Therefore, the defect density must scale as the perimeter
sity of the domains, which again scales as the reciprocalL21

of the linear size of the domains. Furthermore, Houet al.
find that the energy of the Swift-Hohenberg system~1! de-
cays as the defect density. Also here the diblock copolym
system behaves as the Swift–Hohenberg system. Measu
the energy, as given by Eq.~3!, we find the algebraic deca
E(t);t2y with the same values fory as above.



lla
ec
ct
l-
et
a
d

ti

q.

ex
-

l
o

h
fa
a
r

e
-

he

r

d

ion,

q.

l

n
of
he

ly

er
robe

is
ical
es-
of

SH
ure

5368 PRE 58JACOB J. CHRISTENSEN AND ALAN J. BRAY
IV. THEORY

Theoretical analysis of the pattern dynamics of lame
phases is complicated by the presence of topological def
and current theories apply only to systems without defe
However, locally typeI s systems exhibit nearly ideal lame
lar structures where, in two dimensions, the order param
can be described as an amplitude modulated plane w
f(r ,t)5@f0A(x,y,t)eik0x1c.c.#, where we have assume
lamellae perpendicular to thex direction; A is a complex
amplitude and c.c. denotes the complex conjugate. Inser
this form into the equations of motion~2! or ~5!, we obtain in
the absence of noise theamplitude equation

t0] tA5eA1j0
2@]x2~ i /2k0!]y

2#2A2g0uAu2A, ~11!

wheret0 , j0 , andg0 are constants. The derivation of E
~11! from the Swift-Hohenberg equation~2! is described in
Ref. @1# and the method of this reference can easily be
tended to the DC equation~5!. The amplitude equation de
scribes the dynamics of both the magnitudeuAu and the
phaseu(r ,t) of the complex amplitudeA. By perturbing the
steady state solution of Eq.~11! we obtain, to lowest order in
e, thephase equation@1#

] tu5D i]x
2u1D']y

2u, ~12!

where D i and D' are diffusion coefficients in the paralle
and normal directions, respectively. Dimensional analysis
Eq. ~12! implies a t1/2 growth of the characteristic lengt
scale, in disagreement with numerical investigations that
vor a smaller value of the growth exponent. However,
discussed below, by considering how a curved interface
laxes, working to second order ine, a transient regime with
t1/4 growth can be predicted.

A. Projection operator method

In order to follow the slowly varying orientation of th
rolls ~or lamellae! Elderet al. @2# introduce a coordinate sys
tem that tracks the interface given by the points at whichf
50. Specifically, the Cartesian coordinatesx and y are
mapped onto curvilinear coordinates (u,s), whereu and s
are locally normal and parallel to the linesf(r ,t)50. As-
suming that the curvature of the individual rolls is small, t
Laplacian in the new coordinates becomes

¹2.
]2

]u2
1k

]

]u
1

]2

]s2
, ~13!

wherek is the local curvature. Assuming that the stationa
solution of the one-dimensional Swift-Hohenberg equation
a good approximation in the normal direction, Eq.~2! be-
comes

]fs

]u

]u

]t
52kS ]fs

]u
1

]3fs

]u3 D 1kss

]fs

]u
1D, ~14!

where kss5]2k/]s2 and fs is the solution offs
„u(r ,t)…3

5@e2(k0
21]u

2)2#fs
„u(r ,t)…. The final termD in Eq. ~14!

contains terms of higher order ink and terms involving the
derivative of k in the direction normal to the lamellae:D
r
ts

s.

er
ve
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-

f

-
s
e-

y
is

5(kuu1kku)]uf
s1(2ku1k2)]u

2fs, whereku means]uk, etc.
Application of the projection operator

k0

2pE2p/k0

p/k0
du ]ufs ~15!

to Eq. ~14! produces the final result

v52ak1kss, ~16!

where v5] tu is the interface velocity, a
522(k0

21b/s), s5(k0/2p)*
2p/k0

p/k0 du(]ufs)2, and b

5(k0/2p)*
2p/k0

p/k0 du(]ufs)(]u
3fs). The term involving D

drops out from the final result becauseD]ufs can be written
as ]u@(ku1k2/2)(]ufs)2#, which vanishes when integrate
over one lamellar thickness.

In order to evaluate the coefficienta in Eq. ~16! the sta-
tionary solution is expanded to leading order ine, yielding
@5#

fs~u!5F1cos~k0u!1F3cos~3k0u!, ~17!

with coefficientsF15A4e/3 andF352F1
3/256. Using this

expansion we finda5e2/256, remembering thatk0
251.

Applying the same analysis as above to the DC equat
the equation corresponding to Eq.~14! becomes

]fs

]u

]u

]t
5kS ]fs

]u
12

]3fs

]u3
23~fs!2

]fs

]u D 1kss

]fs

]u
1D,

~18!

where fs is the solution of ]u
2fs

„u(r ,t)…35@e2(1/2
1]u

2)2#fs
„u(r ,t)… and D has the same meaning as in E

~14!. Using the projection operator@Eq. ~15!#, we retrieve
Eq. ~16!, only now with a52(112b/s23g/s) whereg
5(k0/2p)*

2p/k0

p/k0 du(fs)2(]ufs)2 and s and b are as de-

fined above. The quantitiess, b, andg can be determined
by substituting the form~17! into the free-energy functiona
~3! and minimizing with respect tok0 , F1 , andF3 . To the
required order ine51/42G, the result isk05G1/45(1/4
2e)1/4, F1

25(8/3)e1(19/6)e2, and F352(9/128)F1
3 ,

leading ~after some algebra! to a5(45/32)e2, correct to
leading nontrivial order ine.

In this approximationa is a very small number,a.2.4
31024 anda.3.531023 in the SH and DC systems whe
e50.25 ande50.05, respectively. Dimensional analysis
Eq. ~16! therefore implies a crossover in the growth of t
characteristic length scale from a transientt1/4 growth to an
asymptotict1/2 growth. The crossover occurs approximate
when (at)1/25t1/4, that is, whent.1.73107 in the SH sys-
tem and whent.83104 in the DC system. These crossov
times far exceed the latest times we have been able to p
in our simulations, but though~as pointed out by Elderet al.
@2#! an appealing interpretation of the numerical results
that they witness the transient regime, there is no numer
evidence of any crossover behavior. However, since the
timated crossover time for the DC system is three orders
magnitude smaller than the corresponding time in the
system, the DC system is the obvious candidate for fut
investigations.
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B. Relaxation of a modulated interface

The same problem can be investigated using a gen
approach to growth exponents recently developed by on
the authors@3#. We consider a small regular perturbation
the perfect lamellar phase and wish to determine the rat
which the system relaxes to its ground state. Sett
f(x,y,t)5fL(x)1f̃(x,y,t), wherefL(x) is the stationary
lamellar solution of the Swift-Hohenberg equation~2!,

05efL2~k0
21]x

2!2fL2fL
3 , ~19!

andf̃ is a small perturbation, the linearized equation of m
tion for f̃ becomes

] tf̃5ef̃2~k0
21¹2!2f̃23fL

2f̃. ~20!

A modulation of the lamellar phase with wave vectorq
!k0 is f(x,y,t)5fL@x1A(t)cos(qy)#.fL(x)
1fL8(x)A(t)cos(qy), wherefL8 means]xfL and the amplitude
A of the modulation is assumed to be small compared to
lamellar spacing~Fig. 5!. More generally, we can write th
modulated phase as

f~x,y,t !5fL~x!1A0e2vqtcos~qy!cq~x!, ~21!

where the functioncq(x) has the same periodicity asfL

@fL;cos(k0x),k051# and satisfies the conditioncq50(x)
5fL8(x) sinceq50 represents a uniform translation of th
lamellae. We have written the time dependence of the
plitude asA(t)5A0e2vqt, describing the decay of the eigen
perturbation of the wave vectorq at a characteristic ratevq .

Insertion of Eq.~21! into Eq. ~20! yields an eigenvalue
equationĤcq5vqcq for the relaxation rate with the Hamil
tonian

Ĥ5~k0
21]x

2!213fL
2~x!2e22q2~]x

21k0
2!1q4. ~22!

The q50 mode corresponds to a uniform displacement
the interface whereforevq50 is fixed to zero. Sincec0

5fL8 , this condition corresponds to

05efL823fL
2fL82fL822fL-2fL-9, ~23!

which is satisfied because Eq.~23! is the derivative of Eq.
~19!.

FIG. 5. Sketch of~a! the unperturbed lamellar phase and~b! a

modulated lamellar phase. The perturbationf̃5A(t)cos(qy)cq in-
troduces spatial variations in the pattern at the length scalL
52p/q.
ral
of

at
g

-

e

-

f

In the limit e→0 we havefL→0, so fore50 the eigen-
value equation reads 2vqcq52(k0

22q2)2cq22(k0
2

2q2)cq92cq-8. Remembering thatcq is periodic inx with
wave vectork0 , this impliesvq5q4. For smalle we expect
vq5aq21q4, where a is a constant. We can verify thi
assertion and determine the value ofa by treating the
q-dependent part ofĤ as a perturbation and calculate th
first-order correction to the ground state eigenvalue us
standard perturbation techniques. The unperturbed eig
function for Ĥ is c05fL8 with eigenvalue zero. Obviously
theq4 term in the perturbation just gives a contributionq4 to
the eigenvalue. TheO(q2) contribution is

aq2522q2
E dx fL8~]x

21k0
2!fL8

E dx~fL8 !2

52q2F E dx~fL9 !2

E dx~fL8 !2

2k0
2G

and with fL expanded as previously@Eq. ~17!# we havea
5e2/256. Thus the relaxation rate is

vq5
e2

256
q21q4. ~24!

We notice that the coefficienta here assumes the same val
as determined above by the projection operator method
that a dimensional analysis of Eq.~24! thus predicts the sam
crossover behavior as did the analysis of Eq.~16! for the
interface velocity. Furthermore, we notice that the form
expression for the coefficienta is identical to that obtained
from the projection operator method, as may be seen from
integration by parts, i.e., the result holds generally, not jus
the order given by the expansion~17!.

Due to the more complicated structure of the DC equat
~5!, a similar analysis of interfacial relaxation in diblock co
polymers has not yet proved possible. The main difficulty
that the Hamiltonian operatorĤ for this case is not self-
adjoint, even forq50, with the result that a perturbativ
calculation ofvq requires not only the null eigenfunctio
fL8(x) of theq50 operatorĤ0 , but also the null eigenfunc

tion of the adjoint operatorĤ0
† , which we have so far been

unable to determine.

V. SUMMARY AND DISCUSSION

By numerical investigations we have found evidence
identical coarsening dynamics for the lamellar phase of
Swift-Hohenberg and diblock copolymer systems. This s
gests that both systems belong to the same universality c
We have extracted temperature-dependent dynamical sc
exponents for the characteristic length scale partly by co
puting the ordinary structure factor and partly by computi
a correlation function@Eq. ~8!# of the director field. Surpris-
ingly, the two methods yield different scaling exponents
dicating that the scaling phenomenon in question is n
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trivial. We have no good understanding of the reasons
this discrepancy, but it should be noticed that the length s
extracted from the structure factor does not have the s
immediate geometrical interpretation as has the length s
extracted from the director-field correlation function. Fu
thermore, the fact that the length scaleLnn arising from the
director field correlation function scales with the sam
growth exponents as the energy suggests thatLnn is the
physically important length scale in the system.

Theoretically, by considering how curved interfaces re
we have demonstrated that the projection operator met
when applied to either of the two systems, results in the sa
scaling exponents. This finding supports the suggestion f
our numerical work that the coarsening dynamics of
v.
r
le
e
le

x
d,
e

m
e

Swift-Hohenberg and diblock copolymer systems belong
the same universality class. However, the theoretical anal
applies only to defect-free systems and does not explain
observed temperature dependence of the growth expon
A thorough understanding of the coarsening phenome
considered here requires a theoretical treatment that suc
fully includes the simultaneous effects of both interfacial
laxation and defect-defect interactions.
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